

Avaliação de substratos e profundidade de semeadura na emergência e desenvolvimento de ipê rosa

Bruna Cândida Rodrigues¹* (IC), Héria de Freitas Teles¹ (PQ)

¹Universidade Estadual de Goiás, Campus Palmeiras de Goiás, email brunacandida23@gmail.com

Resumo: O ipê rosa (*Handroanthus heptaphyllus* (Vell.) Mattos) em função de seu florescimento exuberante são muito utilizados no paisagismo, arborização de ruas e avenidas e em reflorestamentos. Objetivou-se, com este trabalho, avaliar a emergência e o desenvolvimento de mudas de ipê rosa e ipê branco em diferentes tipos de substratos e profundidades de semeadura. Os substratos avaliados foram: solo + vermiculita; solo + areia lavada; solo + areia + vermiculita; e solo + areia + esterco bovino curtido; e as profundidades de semeadura de 1 e de 3 cm. As variáveis analisadas foram: porcentagem de emergência aos 7, 14, 21 e 28 dias; altura da planta (cm) e diâmetro do colo (mm) aos 30, 60, 90 e 120 dias. Não houve diferenças nas porcentagens de emergência nos diferentes substratos testados. O substrato que obteve melhor desenvolvimento das mudas de ipê rosa foi a mistura de solo, areia e esterco bovino curtido. Já a menor profundidade de semeadura proporcionou a maior porcentagem de emergência e melhor desenvolvimento das mudas para as duas espécies.

Palavras-chave: Handroanthus heptaphyllus. mudas.viveiro.

Introdução

As árvores são componentes importantes para uma melhor condição ambiental urbana e para qualidade de vida de seus habitantes. O ipê rosa, *Handroanthus heptaphyllus* (Vell.) Mattos, em função do florescimento exuberante são muito utilizadas no paisagismo e para a arborização de ruas e avenidas. Essas espécies também são recomendadas para a utilização em reflorestamentos em terrenos secos e pedregosos (PEREIRA et al., 2013).

O ipê rosa *Handroanthus heptaphyllus* (Vell.) Mattos é uma árvore com altura de 10 a 20 metros, tronco de 40 a 80 cm de diâmetro, revestido por casca áspera de cor acinzentada. Apresenta madeira pesada, duríssima, resistente, indefinidamente durável sob quaisquer condições. A árvore em plena floração é um espetáculo de grande beleza, que a faz uma das espécies mais populares em uso no paisagismo brasileiro em geral; é particularmente útil para arborização de ruas e avenidas. É ótima para reflorestamentos mistos destinados à recomposição de áreas degradadas de preservação permanente (LORENZI, 2008, p. 62).

Desta maneira, o objetivo do presente trabalho foi avaliar a emergência e o crescimento de mudas de ipê rosa, produzidas de sementes coletadas na região de Palmeiras de Goiás, em diferentes tipos de substratos e profundidade de semeadura.

Material e Métodos

O presente estudo foi instalado e conduzido no viveiro com telado de sombrite (50%) da Universidade Estadual de Goiás - Campus Palmeiras de Goiás.

As sementes utilizadas foram coletadas de diversas árvores no perímetro urbano de Palmeiras de Goiás, nos meses de agosto e setembro de 2016. As sementes de ipê-rosa ($Handroanthus\ heptaphyllus$) foram armazenadas em laboratório por 47 dias, e semeadas (19/10/2016) em embalagens plásticas de polietileno preto (17 x 22 cm) com quatro substratos avaliados: S_1 - solo e vermiculita (2:1); S_2 - solo e areia (2:1); S_3 - solo, areia e vermiculita (1:1:1); e S_4 - solo, areia e esterco bovino curtido (2:1:1). A vermiculita utilizada foi de classe "E" super fino.

Foram utilizadas duas profundidades de semeadura: 1 e 3 cm, e semeadas 3 sementes por recipiente. Após 31 dias de semeadura, as plântulas emergidas dos recipientes foram repicadas, e deixadas somente uma planta por embalagem.

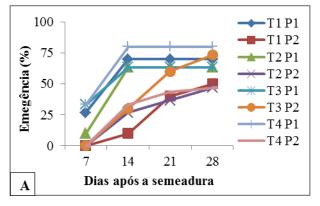
Para a avaliação dos efeitos dos tratamentos sobre a emergência aos 7, 14, 21 e 28 dias e formação das mudas de ipê rosa e aos 30, 60, 90 e 120 dias após a semeadura, foram analisadas as seguintes características: Porcentagem de emergência; Altura da planta – foi considerada altura da planta a distância entre o colo da planta e a gema apical, mensurada com auxílio de uma régua milimetrada; Diâmetro do caule – com o auxílio de um paquímetro digital foi mensurado o diâmetro do caule na região do colo da planta.

O experimento foi realizado em delineamento inteiramente casualizado em arranjo fatorial (4x2), com dez repetições, essas constituídas de uma muda por embalagem. Os dados foram submetidos à análise de variância pelo teste F, as médias comparadas pelo teste de Scott-Knott a 5% de probabilidade, utilizando o software ASSISTAT 7.7 (SILVA, 2016).

Resultados e Discussão

A) Emergência

Não houve interação significativa entre substrato e profundidade de semeadura para a porcentagem de emergência de ipê rosa aos 7, 14, 21 e 28 dias, apenas efeito isolado do fator profundidade, não havendo, portanto, diferenças nas porcentagens de emergência nos diferentes substratos testados (Tabela 1).


Tabela 1. Valores de F obtidos na análise de variância para emergência de ipê rosa aos 7. 14. 21 e 28 dias após a semeadura.

Causas da variação	7 dias	14 dias	21 dias	28 dias
Substrato (S)	1,66 ^{ns}	1,18 ^{ns}	0,73 ^{ns}	0,73 ^{ns}
Profundidade (P)	36,49**	47,08**	13,21**	5,21*
Interação S x P	1,66 ^{ns}	0,87 ^{ns}	1,19 ^{ns}	1,91 ^{ns}
CV (%)	148,06	61,14	52,09	47,67

^{*} Significativo a 5% de probabilidade; ** Significativo a 1% de probabilidade; ns não-significativo.

Os maiores valores de emergência ocorreram na profundidade de 1 cm, cujas médias foram 25,83%; 69,17%; 69,17%; e 69,17% para aos 7, 14, 21 e 28 dias, respectivamente. Na profundidade de 3 cm a emergência foi estatisticamente inferior, com valores médios de 0%; 25%; 45%; e 54,16%. Ao final dos 28 dias de avaliação, pôde-se observar que para a profundidade de 1 cm, aos 14 dias já estabilizou a taxa de emergência das plântulas. Já para a profundidade de 3 cm, a emergência só começou a ser contabilizada aos 14 dias e esta ainda ocorria aos 28 dias de semeadura.

Figura 1. Porcentagem de emergência de ipê rosa (A) aos 7, 14, 21 e 28 dias após a semeadura.

(T1 = Solo + vermiculita (2:1), T2 = Solo + areia (2:1), T3 = Solo + areia + vermiculita (1:1:1), T4 = Solo + areia + esterco bovino (2:1:1), P1 = Profundidade a 1 cm, P2 = Profundidade a 3 cm).

A menor profundidade de semeadura proporcionou a maior porcentagem de emergência, e também um menor tempo e maior estabilidade deste processo. A semeadura em 3 cm de profundidade limitou e retardou a emergência de plântulas de ipê rosa, pois segundo Napier (1985), semeaduras profundas dificultam a emergência das plântulas e aumentam o período de suscetibilidade a patógenos. De acordo com Passos;Ferreira (1991), a profundidade ideal de semeadura é a que garante uma germinação homogênea das sementes, rápida emergência das plântulas e produção de mudas vigorosas.

A emergência das plântulas depende não só da energia contida no endosperma ou cotilédones, mas também da profundidade em que a semente é semeada (Hackbart; Cordazzo, 2003). Uma germinação rápida e uniforme das sementes, seguida por imediata emergência das plântulas são características altamente desejáveis na formação de mudas, pois quanto mais tempo a plântula permanecer nos estádios iniciais de desenvolvimento e demorar para emergir do solo, mais vulnerável estará às condições adversas do meio (Martins et al., 1999).

A) Desenvolvimento inicial

Não houve diferença significativa entre os fatores para diâmetro do colo de ipê rosa, apenas efeito isolado do fator profundidade de semeadura aos 60 e 90 dias de avaliação (Tabela 3). Em relação à altura de mudas de ipê rosa não foi observado efeito significativo entre os fatores substrato e profundidade de semeadura aos 90 e 120 dias. Porém aos 30 e 60 dias, o fator profundidade foi significativo (Tabela 4). Observa-se que o substrato solo:areia:esterco bovino (2:1:1) proporcionou maior altura e diâmetro, ao final do período de avaliação, utilizando a menor profundidade de semeadura.

Tabela 3. Valores de F obtidos na análise de variância para diâmetro do colo de ipê rosa aos 30, 60, 90 e 120 dias após a semeadura.

Causas variação	da	30 dias	60 dias	90 dias	120 dias
Substrato (S	S)	0,87 ^{ns}	2,71 ^{ns}	2,00 ^{ns}	1,67 ^{ns}
Profundidad	le (P)	3,27 ^{ns}	12,99**	5,46 *	3,95 ^{ns}
Interação S	хР	1,15 ^{ns}	1,27 ^{ns}	0,51 ^{ns}	0,49 ^{ns}
CV (%)		42,06	36,89	44,48	48,02

^{*} Significativo a 5% de probabilidade; ** Significativo a 1% de probabilidade; ns não-significativo.

Tabela 4. Valores de F obtidos na análise de variância para altura de ipê rosa aos 30, 60, 90 e 120 dias após a semeadura.

00, 00, 00 0	120 0100	apoo a comoaa	iaia.		
Causas	da	30 dias	60 dias	90 dias	120 dias
variação					
Substrato (S)		0,34 ^{ns}	2,15 ^{ns}	1,00 ^{ns}	0,83 ^{ns}
Profundidad	de (P)	23,05 **	11,99 **	1,20 ^{ns}	2,31 ^{ns}
Interação S	хР	0,68 ^{ns}	1,00 ^{ns}	0.65 ^{ns}	0,61 ^{ns}
CV (%)		42,19	41,44	46,48	46,74

^{*} Significativo a 5% de probabilidade; ** Significativo a 1% de probabilidade; ns não-significativo.

Figura 2. Altura (A) e diâmetro do colo (B) de mudas de ipê rosa em diferentes substratos e profundidade de semeadura.

(T1 = Solo + vermiculita (2:1), T2 = Solo + areia (2:1), T3 = Solo + areia + vermiculita (1:1:1), T4 = Solo + areia + esterco bovino (2:1:1), P1 = Profundidade a 1 cm, P2 = Profundidade a 3 cm).

Zietemann;Roberto (2007) obtiveram resultados semelhantes quando verificaram a produção de mudas de goiabeira (*Psidium guajava* L.) em diferentes substratos, onde o substrato à base de mistura de solo (Latossolo) + areia + matéria orgânica (esterco de curral) (2:1:1) mostrou ser boa alternativa para a produção de mudas das cultivares estudadas. A presença de areia e matéria orgânica ao solo equilibrou as propriedades físicas necessárias para o desenvolvimento das plantas, como a porosidade e a drenagem.

A importância da matéria orgânica nos substratos deve-se à sua influência nas propriedades físicas, químicas e biológicas. Conforme Sturion ;Antunes (2000), citados por Grave et al. (2007), o diâmetro tem sido reconhecido como um dos melhores parâmetros, senão o melhor, dos indicadores de padrão de qualidade. As mudas de pequeno diâmetro e muito altas são consideradas de qualidade inferior às menores, quando comparadas com aquelas de maior diâmetro do colo. Um maior diâmetro do colo está associado a um desenvolvimento mais acentuado da parte aérea e, em especial, do sistema radicular, favorecendo a sobrevivência e o desenvolvimento da muda após o plantio.

Araújo; Paiva Sobrinho (2011), avaliando a germinação e produção de mudas de tamboril, concluíram que as características das mudas avaliadas, aos 120 dias após a semeadura, foram influenciadas positivamente pelo esterco bovino na composição do substrato. Para Cunha et al. (2006), a melhor "performance" das mudas de *Acacia* sp, comparando-se diferentes substratos com a mesma proporção de material orgânico, foi observada quando se utilizou esterco bovino.

A escolha por um determinado substrato vai depender da finalidade do uso, pois dificilmente se encontra um material com todas as características que atenda às condições para o ótimo crescimento e desenvolvimento das plantas (SOUZA et al., 1995). As características físicas, químicas e biológicas devem oferecer as melhores condições para que haja uma excelente germinação e favoreça o desenvolvimento de mudas (MINAMI; PUCHALA, 2000). O uso de um substrato inadequado pode ocasionar irregularidade ou até mesmo nulidade na germinação, logo, o substrato se constitui num dos fatores mais complexos na produção de mudas.

Considerações Finais

O substrato composto pela mistura de solo, areia e esterco bovino curtido, com profundidade de semeadura à 1 cm, proporcionou maior percentual de emergência de sementes de ipê rosa, além de maior altura e diâmetro das mudas.

Agradecimentos

Agradecemos à Universidade Estadual de Goiás pela oportunidade de iniciação científica através da modalidade PVIC/UEG.

Referências

ARAÚJO, A. P. de; PAIVA SOBRINHO, S. de. Germinação e produção de mudas de tamboril (*Enterolobium contortisiliquum* (VELL.) MORONG) em diferentes substratos. **Revista Árvore,** Viçosa, v. 35, n. 3, p.581-588, 2011.

CUNHA, A. de M. et al. Efeito de diferentes substratos sobre o desenvolvimento de mudas de *Acacia* sp. **Revista Árvore,** Viçosa, v. 30, n. 2, p.207-214, 2006.

GRAVE, F. et al. Crescimento de plantas jovens de açoita-cavalo em quatro diferentes substratos. **Ciência Florestal**, v. 4, n. 17, p.289-298, out. 2007. HACKBART, V. C. S.; CORDAZZO, C. V. Ecologia das sementes e estabelecimento das plântulas de *Hydrocotyle bonariensis* Lam. **Atlântica**, n. 25, v. 1, p. 6165,2003. LORENZI, H. **Árvores Brasileiras:** Manual de Identificação e Cultivo de Plantas Arbóreas Nativas do Brasil. 5. ed. Nova Odessa: Instituto Plantarum, 2008. 384 p. MARTINS, C.C.; NAKAGAWA, J.; BOVI, M.L.A. Efeito da posição da semente no substrato e no crescimento inicial das plântulas de Palmito-Vermelho (*Euterpe espiritosantensis* Fernandes – Palmae). **Revista Brasileira de Sementes**, v. 21, n. 1, p. 164-173,1999.

NAPIER, I.A. **Tecnicas de viveros florestales con referencia especial a centroamerica**. Costa Rica: Signa Tepec, Espemacifor, 1985. 274p. PASSOS, M.A.A.; FERREIRA, R.L.C. Influência da cobertura de semeio na emergência e desenvolvimento inicial de algaroba. **Revista Brasileira de Sementes**, v.13, n.2, p.51-153, 1991.

PEREIRA, A. V. A. et al. Resposta ao estresse hídrico em mudas de *Handroanthus roseo-albus* (Ridl.) Mattos e *Handroanthus chrysotrichus* (Mart. ex A.DC.) Mattos. 2013. Disponível em: https://www.botanica.org.br/trabalhos-cientificos/64CNBot/resumo-ins18857-id4361.pdf. Acesso em: 26 jan. 2017. SILVA, F.de A.S.; AZEVEDO, C.A.V. de. The Assistat Software Version 7.7 and its use in the analysis of experimental data. **Afr. J. Agric. Res.,** v. 11, n.39, p.3733-3749, set. 2016.

SOUZA, M. M.; LOPES, L. C.;

FONTES, L.

E. F. Avaliação de substratos para o cultivo de crisântemo (*Chrysanthemum morifolium* Ramat., Compositae) 'White Polaris' em vasos. **Revista Brasileira de Horticultura Ornamental**, v.1, n.2, p.71-77, 1995.

ZIETEMANN, C.; ROBERTO, S. R. Produção de mudas de goiabeira (*Psidium guajava* L.) em diferentes substratos. **Revista Brasileira de Fruticultura**, v. 29, n. 1, p.137-142, abr. 2007.

