

Estado Nutricional e Produtividade de Cenoura em Resposta à Fontes e Doses de Nitrogênio * Lucas Brennon Romão Crispim¹ (IC), Luiz Henrique Barros Cirino¹ (IC), Henyo Alves Rodrigues Dias¹ (IC), Hisnaider Alves Fidelis¹ (IC), Adilson Pelá² (PQ).

Universidade Estadual de Goiás – Campus Ipameri⁽¹⁾⁽²⁾.

lucascrispim803@gmail.com

Resumo: O conhecimento relacionado a adubos e fontes nitrogenadas é essencial para aumentar a eficiência dos fertilizantes e maximizar a produtividade das culturas. No caso da cenoura por ser uma planta tuberosa cuja raiz constitui a parte comestível, a maior parte do N deve ser aplicado em cobertura. O presente trabalho teve como objetivo avaliar as características morfológicas da cenoura em resposta à diferentes fontes e doses de nitrogênio. O delineado experimental foi em blocos casualizados, com três repetições, em esquema fatorial 5x2+1, sendo cinco doses de nitrogênio, duas fontes de nitrogênio (Ureia Convencional e Ureia revestida) e um controle. A parcela experimental foi constituída por três linhas duplas, espaçadas de 0,10 m entre as duplas e 0,35 m entre as centrais. Cada parcela possui 2 m de comprimento e 1 m de largura perfazendo 2m2. Os tratamentos foram aplicados, sobre a superfície do solo, na adubação de cobertura aos 40 dias após o plantio. As diferentes fontes e doses não apresentaram influência significativa sobre as variáveis, altura da parte aérea, diâmetro de raiz e comprimento de raiz. Com ureia protegida, a máxima biomassa de plantas foi 28% superior e com 75% da dose de ureia comum.

Palavras-chave: Daucus carota L. adubação. volatilização de N.

Introdução

No Brasil a cenoura (Daucus carota L.) é uma das principais culturas da classe das hortaliças sendo a principal raiz de importância econômica (Marouelli et al., 2007) apresentando um consumo per capita de 5,8 kg/ano (ZANFIROV et al., 2012).

Um dos principais desafios do cultivo da cenoura em regiões de alta temperatura e ampla luminosidade, tem sido a baixa disponibilidade de nutrientes em sistemas de produção, principalmente o nitrogênio (SILVA, 2002).

De maneira geral o N é o nutriente mineral mais exigido pelas hortaliças (Filgueira, 2000) entretanto a principal fonte de N nos solos é a matéria orgânica visto que a maioria dos solos cultivados contém toneladas de N orgânico em seus perfis porém a maior parte desse N não está prontamente disponível pelo fato de que o nutriente tem que estar em sua forma mineral para que a planta possa absorve-lo (URQUIAGA e ZAPATA, 2000).

Em função do lento processo de mineralização do N no solo, da alta demanda de nitrogênio pela cultura da cenoura, da facilidade de perda desse nutriente por volatilização e lixiviação e consequentemente da carência desse nutriente na forma mineral ou absorvível, torna-se necessário a adoção de práticas que suprem a demanda de N disponível no solo, como a adubação química com fontes nitrogenadas.

Neste contexto o domínio do conhecimento relacionado a adubos e fontes nitrogenadas é essencial para aumentar a eficiência dos fertilizantes e maximizar a produtividade das culturas (PRANDO et al. 2013). No caso da cenoura por ser uma planta tuberosa cuja raiz constitui a parte comestível, a maior parte do N deve ser aplicado em cobertura (FILGUEIRA, 2003).

Além dessas práticas de manejo que visam minimizar a perda de nitrogênio no solo, podemos considerar também algumas tecnologias que podem ser aliadas a essas práticas e assim melhorar o aproveitamento do N nos sistemas de cultivo como os fertilizantes de eficiência aumentada. A utilização de fertilizantes de liberação controlada tem sido proposta para diminuir perdas, e assim sincronizar a liberação de nutrientes com a demanda das culturas (CAHILL et al. 2010).

Um dos tipos de fertilizantes de liberação controlada é composto por grânulos de ureia revestidos por uma ou mais camadas protetoras. Como proteção, dentre outras substâncias, têm sido utilizados polímeros ou resinas permeáveis à água, aplicados em camadas, que, supostamente, regulam o processo de liberação do nutriente contido no interior das camadas protetoras (SILVA et al. 2012).

O presente trabalho teve como objetivo avaliar as características morfológicas da cenoura em resposta à diferentes fontes e doses de nitrogênio.

Material e Métodos

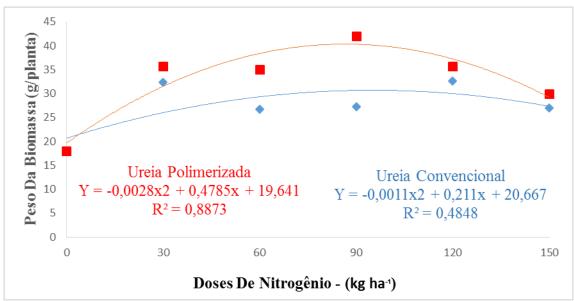
O experimento foi implantado na Fazenda experimental da Universidade Estadual de Goiás, Câmpus Ipameri, no município de Ipameri, Goiás, utilizando área com solo classificado como Latossolo VERMELHO-AMARELO Distrófico (EMBRAPA, 2006), as práticas de preparo do solo foram de forma convencional, realizando-se duas gradagens e nivelamento da área e o plantio foi feito sobre canteiros.

O delineado experimental foi em blocos casualizados, com três repetições, em esquema fatorial 5x2+1, sendo cinco doses de nitrogênio, duas fontes de nitrogênio (Ureia Convencional e Ureia revestida) e um controle.

A parcela experimental foi constituída por três linhas duplas, espaçadas de 0,10 m entre as duplas e 0,35 m entre as centrais. Cada parcela possui 2 m de comprimento e 1 m de largura perfazendo 2m2. A área útil da parcela são as duas fileiras centrais, descartando-se 0,50 m de cada extremidade, perfazendo 1,80 m2. A variedade utilizada foi a híbrida Melissa F1, indicada para o inverno, com população de 800.000 plantas/há-1, semeada manualmente no dia 13 de Junho de 2018. A adubação de base realizada foi 50 kg N + 600 kg P2O5 + 200 K2O/ha-1, utilizando Ureia convencional como fonte de N, Superfosfato Simples como fonte de P e cloreto de potássio como fonte de K2O, incorporados homogeneamente em todas as parcelas e os tratamentos foram aplicados em cobertura aos 55 dias após a emergência da cultura. O ensaio é irrigado por aspersão, uma vez que nessa época do ano, na região de Ipameri o índice pluviométrico é baixo.

A prática de desbaste foi realizada 32 dias após o plantio respeitando a distância de 3 cm entre plantas, pois reduzindo o número de plantas, consequentemente, a competição por luz, nutrientes e água, possibilitando a produção de raízes de padrão comercial (FINGER et al., 2005). Os tratamentos foram aplicados, sobre a superfície do solo, na adubação de cobertura aos 40 dias após o plantio.

Aos 72 dias de emergência da cultura foi feita uma amostragem de 5 plantas da área útil por parcela de modo que não prejudicasse significativamente a produtividade, e após a coleta foram avaliadas as variáveis altura da parte aérea (APA), comprimento de raiz (CR), diâmetro de raiz (DR) e Biomassa de planta (BP) raiz e parte aérea com o auxílio de régua graduada em centímetros, paquímetro e balança de precisão, respectivamente. Os dados obtidos foram submetidos à análise de variância e regressão, utilizando-se o programa de análise estatística SisVar v.5.3.


Resultados e Discussão

Para a variável comprimento de raiz (CR), a menor média obtida foi de 10,33 cm na dose de 150 kg ha⁻¹ de N utilizando ureia convencional como fonte e a maior média obtida foi de 14 cm na dose de 120 kg ha⁻¹ de N também cm a fonte ureia convencional, mas que não diferiram estatisticamente das médias dos demais tratamentos.

A maior média obtida na variável altura da parte aérea (APA) foi de 45 cm na dose de 90 kg ha⁻¹ de N com a fonte ureia convencional e a menor média obtida foi de 37,66 cm na dose de 90 kg ha⁻¹ da fonte ureia revestida, porém não apresentaram diferença significativa dos demais tratamentos.

Em relação ao diâmetro de raiz (DR), a menor média observada foi de 15,66 cm no tratamento com 0 de N e a maior foi de 19 cm que ocorreu no tratamento 120 kg ha⁻¹ de N com a fonte ureia convencional e que foi exatamente igual para o tratamento com 30 kg ha⁻¹ de N com a fonte ureia revestida que também apresentou 19 cm de na maior média do diâmetro de raiz.

Em relação a variável biomassa de planta, houve diferença estatística entre os tratamentos, a maior média observada foi de 42 g/planta no tratamento com 90 kg ha-1 de N utilizando ureia revestida como fonte, sendo que a maior média observada na fonte ureia convencional foi de 32,66 g/planta na dose de 120 kg ha-1 de N (Figura 1). Usando ureia protegida, a máxima biomassa de plantas foi 28% superior e com 75% da dose de ureia comum. Isso demonstra que a proteção foi efetiva na redução das perdas de N, aumentando a eficiência de aproveitamento desse nutriente.

Figura 1. Biomassa de planta (raiz e parte aérea) em função de diferentes fontes e doses de nitrogênio aplicado em cobertura.

Considerações Finais

As diferentes fontes e doses não apresentaram influência significativa sobre as variáveis, altura da parte aérea, diâmetro de raiz e comprimento de raiz.

Com ureia protegida, a máxima biomassa de plantas foi 28% superior e com 75% da dose de ureia comum.

Agradecimentos

Aos integrantes do Grupo de Pesquisa "Produz Mais"

Referências

CAHILL, S. et al. Evaluation of alternative nitrogen fertilizers for corn and winter wheat production. Agronomy Journal, Madison, v. 102, n. 4, p. 1226-1236, 2010. CEAGESP. Classificação de Cenoura. Programa brasileiro para a melhoria dos padrões comerciais e embalagens de hortigranjeiros. 1999.

EMBRAPA HORTALIÇAS, 2011. 13 de abril. **Hortaliças em números**. Disponível em: http://www.cnph.embrapa.br/paginas/hortalicas_em_numeros.htm Acesso em: 22/03/2017 às 19:37

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Sistema brasileiro de classificação de solos. Brasília: EMBRAPA. 2006. 412p.

FAO. 2013. **Agricultural production, primary crops**. Disponível em http://www.fao.org. Acesso em: 17/03/2017 às 12:03.

FILGUEIRA, Fernando Antônio Reis., **Novo Manual de olericultura:** agrotecnologia moderna na produção e comercialização de hortaliças. Viçosa: UFV, 2000.

FILGUEIRA, Fernando Antônio Reis., **Novo Manual de olericultura:** agrotecnologia moderna na produção e comercialização de hortaliças. 2 Ed. Viçosa. MG: UFV, 2003.

FREITAS, C L et al., **Períodos de interferência de plantas daninhas na cultura da cenoura em função do espaçamento entre fileiras.** In: Planta Daninha, v. 27, p 473-480. 2009.

FINGER, F.L. et al., **Cultura da cenoura**. In: FONTES PCR (ed.). *Olericultura teoria e prática*. Viçosa: Departamento de Fitotecnia/Setor de Olericultura. p.371-384. 2005.

MAROUELLI, Waldir Aparecido et al., **Irrigação na cultura da cenoura.** Embrapa Hortaliças, Brasília. 14p. Circular Técnica, 48. 2007.

MOTA, José Hortêncio et al., **Produção de cenoura cultivada em diferentes doses de cama-de-frango**. Hortic. Brasil., v. 30, n. 2, (CD Rom), julho, 2012.

NAVES FILHO, Agnaldo R. et al., **Efeito de Uso de Diferentes Doses de Fósforo na Cultura da Cenoura.** Três Corações-MG. 2004. Disponível em: http://www.abhorticultura.com.br/biblioteca/arquivos/download/biblioteca/45_0107.p df> Acesso em: 20/03/2017 às 20:04.

PRANDO, A. M. et al. Características produtivas do trigo em função de fontes e doses de nitrogênio. Pesquisa Agropecuária Tropical, Goiânia, v. 43, n. 1, p. 34-41, 2013.

SILVA, A. A. et al. Aplicação de diferentes fontes de ureia de liberação gradual na cultura do milho. Bioscience Journal, Uberlândia, v. 28, supl., p. 104-111, 2012. SILVA, V. V., Efeito do pré-cultivo de adubos verdes na produção orgânica de brócolos (Brassica oleracea L., var. itálica) em sistema de plantio direto. 2002. 86p. Dissertação. Rio de Janeiro: Universidade Federal Rural do Rio de Janeiro. 2002.

ZANFIROV, Carine A. et al., **Produção de Cenoura em Função das Doses de Potássio em Cobertura.** In: Hortic. Brasil, v.30. n.4. Vitória da Conquista, Outubro/Dezembro, 2012

URQUIAGA, S. E ZAPATA, F. fertilización nitrogenada ensistemas de productión agrícola. In: URQUIAGA, S. E ZAPATA, F., eds, Manejo eficiente de la fertilización nitrogenada de cultivos anuales em América Latina y el Caribe. Porto Alegre, Gênese, 2000. P. 77-88.

VILELA, Nirlene Junqueira et al., Retrospectiva e situação atual da cenoura no Brasil. Embrapa Hortaliças, Brasília. 10p. Circular Técnica, 59. 2008.