SÍNTESE E AVALIAÇÃO BIOLÓGICA DE DERIVADOS DE DIARILPIRIMIDINONAS OBTIDOS VIA REAÇÃO DE BIGINELLI-LIKE

Lalessa Lustosa da costa (IC)*, Luciana Machado Ramos (PQ), Felipe Bruno Lourenço (PG). Raíssa Kelly Corrêa de Paiva (PG). lalessa_lustosa@hotmail.com

Universidade Estadual de Goiás (CCET).

Resumo: O interesse por novas metodologias para obtenção de compostos bioativos surgiu como uma alternativa na síntese orgânica. Neste contexto destacam-se as Diarilpirimidinonas (DAPM's) obtidas via reação de Biginelli-like, cujo estudo vem crescendo devido à similaridade de sua estrutura com as Dihidropirimidinonas (DHPM's). Portanto o presente trabalho teve como objetivo sintetizar uma serie de derivados DAPM's. Com a análise metodológica, foi possível determinar as melhores condições reacionais: 80°C, 2 horas de refluxo, sem uso de solvente e utilizando como catalisador Diácido Imidazol. Assim foi possível sintetizar 7 diferentes compostos ($\underline{4a}$ - $\underline{4h}$), os quais obtiveram rendimentos entre 15 a 76%. Posteriormente os derivados solúveis em DMSO foram submetidos à avaliação de toxicidade frente à *Artemias salina*. Dos compostos, observou-se que $\underline{4c}$, $\underline{4d}$, $\underline{4g}$ e $\underline{4h}$ exibiram potencial para atividade antitumoral com valor de DL_{50} < 80 μ g/mL, o produto $\underline{4b}$ apresentou potencial para atividade tripanomissida (DL_{50} 182,78 μ g/mL) e $\underline{4a}$ exibiu DL_{50} 762, 46 μ g/mL, apresentando baixa toxicidade.

Palavras-chave: Biginelli-Like. Diarilpirimidinonas. Artemia salina.

Introdução

Reações de multicomponentes (RMC's) são processos em que se utilizam três ou mais reagentes ao mesmo tempo, ou seja, todos os reagentes utilizados são incorporados ao produto final (SHAABANI; BAZGIR; BIJANZADEH, 2004).

O fator que diferencia as reações de RMC's, quando comparados a algumas reações Lineares é o numero de etapas. Em sínteses lineares o numero de etapas assim com o uso de solventes é maior, acarretando assim em uma maior quantidade de resíduos gerados. Já em RMC's são reações convergentes, o que possibilita a formação do produto desejado em somente uma etapa, otimizando assim o processo (RAMOS, 2012).

Dentre as RMC's o presente trabalho ira destacar as reações de Pietro Biginelli descoberta em 1893. A síntese de Biginelli ocorreu sob catalise ácida, uso de solvente e com a utilização de três componentes sendo eles: benzaldeido, ureia e acetoacetato de etila (esquema1) (NANDI et al., 2010; KAPPE, 2000).

Esquema 1. Reação proposta por Pietro.

Através da síntese realizada por Pietro, foi possível obter um heterociclo conhecido como Dihidropirimidinona (DHPM's), cujo seus derivados apresentaram varias atividades biológicas, tais como: antiviral, antibacteriana, analgésica, anti-inflamatoria, anti-hipertensivo e antitumoral (NANDI et al., 2010).

Devido os derivados de DHPM's apresentarem potenciais para novos fármacos, cresceu-se a busca por condições reacionais melhores . A literatura reporta utilização de diferentes tipos de catalisadores ácidos e bases, entre eles estão: FeCl₃, CuCl₂, SnCl₂.2H₂O, CoCl₂.6H₂O, BF₃.OEt₂, LaCl₃, La(OTf)₃, Yb(OTf)₃, InX (X= Cl, Br), ZrCl₄, BiCl₃, LiClO₄, etc (WANG et al., 2004).

Contudo a catalise tradicional apresenta algumas desvantagens sendo estas: longo tempo de refluxo, baixos rendimentos alcançados, utilização de solventes tóxicos, impurezas dos produtos, uso de catalisadores muito caros, catalise fortemente acida (PHUKAN; KALITA; BORAH, 2010).

Com isso além de modificações dos meios catalíticos, surgiu uma variação da reação de Biginelli clássica chamada reação de "Biginelli-Like". Nesta reação são empregados compostos carbonilados como acetofenona, cetonas cíclicas entre outros reagentes carbonilados (PHUKAN; KALITA; BORAH, 2010).

Em 2004 foi reportada a primeira reação de Biginelli-Like por Wang e colaboradores. Na síntese foi utilizado benzaldeido, acetofenona e ureia, usando como catalisador FeCl₃.6H₂O em TMSCl por 12 horas sob refluxo (esquema 2), o que possibilitou a formação das Diarilpirimidinonas (DAPM's) com 82% de rendimento.

Esquema 2: Reação de Biginelli-Like.

CHO
$$R^{1}$$

$$+ R^{2}$$

$$O$$

$$H_{2}N$$

$$NH_{2}$$

$$FeCl_{3}.6H_{2}O/TMSCl$$

$$refluxo, 12h$$

$$R^{2}$$

$$H$$

FONTE: Adaptado de WANG et al., 2004.

Reações de Biginelli clássica foram e ainda estão sendo aprimorada ate o presente momento, devido a facilidade de obter um biblioteca de compostos ativos, logo tornou-se muito interessante estudar as atividades biológicas presentes nos derivados de Diidropirimidinonas obtidos via reação de Biginelli-Like (WANG et al., 2004; PHUKAN; KALITA; BORAH, 2010).

Um foco especial é dado para a avaliação biológica, destacando nesse contexto, o teste preliminar com *Artemia salina* (TAS). O TAS é um teste rápido e de fácil manuseio para se descobrir compostos com potenciais para novos fármacos, e posteriormente os testes mais específicos realizados: antifúngico, antitumoral, entre outros (CAVALCANTE et al., 2000; COSTA, 2009).

O teste com o microcrustáceo de água salgada, *A. salina*, tem como principal objetivo a identificação da toxicidade dos compostos através de cálculos de dose letal (DL₅₀) (COSTA, 2009; MEYER et al., 1982).

Dolabela (1997) estabeleceu critérios de toxicidade baseando nos cálculos de de DL_{50} : DL_{50} superior a 1000 μ g/mL os produtos analisados não possuem atividade toxicológica, DL_{50} 80 μ g/mL a 250 μ g/mL moderadamente tóxico e DL_{50} < 80 μ g/mL, altamente tóxicos (DOLABELA, 1997).

O presente trabalho objetiva aprimorar a catálise das reações de Biginelli-like empregando uma metodologia que empregue catalisadores recicláveis, solventes

menos tóxicos e melhores rendimentos, além da avaliação toxicológica dos derivados sintetizados.

Material e métodos

Em um balão e findo redondo pesou-se 3mmol de benzaldeido, acetofenona e ureia a 80°C por duas horas sob refluxo sem a utilização de solvente e com agitação magnética constante. A fim de se encontrar melhores condições reacionais.

Inicialmente analisou o melhor catalisador, posteriormente a melhor concentração do catalisador, temperatura e variação do solvente os quais variação entre polar e protico polar. Após escolha das condições reacionais, fez-se a variação dos aldeídos para obtenção dos derivados.

Todos os produtos sintetizados foram tratados com etanol comercial gelado.

Os compostos sintetizados foram solubilizados em DMSO e submetidos a avaliação biológica frente à *Artemia salina* (TAS). Inicialmente preparou-se o sal marinho (36,5 g/L) com pH 8,5 (O pH ideal para que as larvas de TAS sobrevivam após a eclosão é pH entre 8-9).

Os ovos foram colocados em aquário, com controle de luz e com aeração por 48h, criando-se assim um ambiente perfeito para que os ovos eclodissem.

Dos compostos sintetizados, foram preparadas concentrações de 10, 25 e 50 μg/mL apenas dos que foram solúveis em DMSO a 5%, o qual tambpem foi usado como controle negativo e para o controle positivo usou-se K₂Cr₂O₇ com concentração 11mg/L.

Em cada tubo de ensaio adicionou-se 3m L das diferentes concentrações de cada solução (em triplicata) e colocou-se 10 larvas das *Artemia salina*. Os tubos foram deixados na presença de luz por 24 horas, e após esse período fez a contagem do número de larvas vivas.

Resultados e Discussão

A fim de se descobri melhores condições reacionais para obtenção de DAPM's, foram montados sistemas usando acetofenona, benzaldeído e ureia variando apenas o catalisador (tabela1).

Tabela 1. Analise da variação dos catalisadores.

Entrada	Catalisador (50 mg)	Rendimento (%)
1		28
2	Diácido Imidazol	50
3	Imidazol	30
4	FeCl ₃	2
5	CuCl ₂	8

^{*3}mmol de Benzaldeido, 3mmol Acetofenona, 3mmol ureia, 80°C, 2 horas.

Dentre os catalisadores usados o que mostrou melhor para obtenção do produto foi o Diácido Imidazol obtendo 50% de rendimento, a reação foi repetida algumas vezes a fim de se verificar os resultados obtidos.

Após escolher o catalisador, fez-se a variação quantidade do mesmo, sendo novamente montados sistemas de refluxos usando benzaldeido, acetofenona e ureia, porém agora variando apenas a quantidade do catalisador (tabela 2).

Tabela 2. Analisando a influência da quantidade do diácido imidazol.

Entrada	Quantidade do catalisador (mg)	Rendimento (%)
1	30	28
2	50	50
3	70	51
4	80	34

^{*3}mmol de benzaldeído, 3 mmol acetofenona, 3 mmol ureia, 80°C, 2 horas, diácido imidazol.

Ao realizar a variação da quantidade do Diácido Imidazol observou-se um decaimento do rendimento da reação e o produto sintetizado apresentava resquícios do catalisador. Portanto optou-se por utilizar 50mg do catalisador, uma vez que o precipitado formado ficou homogêneo.

Após catalisador e concentração escolhidos viu-se necessário avaliar a temperatura reacional (tabela 3).

Tabela 3. Avaliação da temperatura empregando Diácido Imidazol

Entrada	Temperatura (°C)	Rendimento (%)
1	40	30
2	50	21
3	60	33
4	70	28

5	80	50
6	90	56
7	100	31

*3mmol de Benzaldeido, 3mmol Acetofenona, 3mmol ureia, 2 horas, diácido imidazol.

A temperatura que se mostrou melhor nas condições reacionais escolhidas foi a de 80°C, obteve 50% de rendimento. Com o aumento da temperatura observou-se que havia um retardamento da reação, ou seja, a conversação de reagentes em produtos leva mais tempo para acontecer.

Após a escolha do catalisador, da concentração e temperatura avaliou-se o comportamento do solvente no meio reacional, usando 1mL de cada solvente variado (Tabela 4).

Tabela 4. Variação do solvente usando diácido imidazol

Entrada	Solventes	Rendimento (%)
1	Sem solvente	50
2	MeOH	53
3	THF	-
4	H ₂ O	-
5	C_2H_3N	43

^{*3}mmol de Benzaldeido, 3mmol Acetofenona, 3mmol ureia, 80°C, 2 horas, diácido imidazol.

Como um dos objetivos do presente trabalho era utilizar processos mais verdes, ou seja, com menor geração de resíduos e sem usar solventes muito tóxicos, optou por fazer a variação dos aldeídos sem solvente uma vez que o rendimento da reação com o metanol deu muito próximo da reação sem solvente.

Tabela 5: Derivados de Biginelli-like sintetizados

Entrada	Produto	Rendimento
1	NH NH O H 4a	50%
2	NH NH S 4b	20%

III Congresso de Ensino, Pesquisa e Extensão da UEG Inovação: Inclusão Social e Direitos 19 a 21 de outubro de 2016

Pirenópolis - Goiás

3

Continuação da Tabela 5 : Derivados de Biginelli-like sintetizados		
4	NO ₂ NH NH O 4d NO ₂	37%
5	NH NH O	64%
6	NO ₂ NH NH O	17%
7	OH NH O 4g	15%
8	N H O H	29%

Posteriormente foi feito a analise dos derivados frente à Artemia salina, e através dos valores de DL50 encontrados foi possível correlacionar os dados experimentais com os valores da literatura (Tabela 6).

Tabela 6. Valores de DL₅₀ do derivados sintetizados.

Entrada	Composto	DL50 (µg/mL)	Toxicidade
1	4a	762,46	Baixa Toxicidade
2	4b	182,78	Moderadamente tóxico
3	4c	71,99	Altamente tóxico
4	4d	41,43	Altamente tóxico

Comparados com os valores estabelecidos por Dolabela em 1997 os compostos da entrada 2 apresenta potencial para atividade tripanomissida e os compostos da entrada 3,4, 5 e 6 apresentam potencial para atividade antitumoral.

Considerações Finais

Foi possível avaliar as melhores condições de reação de Biginelli-like utilizando um catalisador de Líquido Iônico, empregando conceitos de química verde.

Os dados obtidos com o ensaio biológico frente a *A. salina* demonstraram possíveis atividades biológicas dos compostos sintetizados.

Agradecimentos

À UEG pela bolsa CNPQ concedida

Referências Bibliográficas

COSTA, S.S.; DOLABELA, M. F.; OLIVEIRA, D. J.; MULLER, A.H. Estudos farmacognósticos, fitoquímicos, atividade antiplasmódica e toxicidade em Artemia salinade extrato etanólico de folhas de Montrichardia linifera(Arruda) Schott, Araceae, **Revista Brasileira de Farmacognosia**, v.19, n. 4, p. 834-838, 2009.

DOLABELA, M. F. Triagem in vitro para atividade antitumoral e anti Trypanossoma cruzi de extratos vegetais, produtos naturais e susbstâncias sintéticas. Minas Gerais, 130p. Dissertação de Mestrado, Departamento de Fisiologia e Farmacologia, ICB, Universidade Federal de Minas Gerais, 1997.

KAPPE, C.O. Biologically active dihydropyrimidones of the Biginelli-type — a literature survey. **European Journal of Medicinal Chemistry**, v.35, n.12, p. 1043 – 1052, 2000.

MEYER, B.N.; FERRIGINI, N.R.; PUTNAN, J. E,; JACOBSEN, L. B.; NICHOLS DE, MCLAUGHLIN, J.L.; Brine shrimp: a convenient general bioassay for active plants constituents. **Journal of medicinal Plant research,** v.45, p.31-34, 1982.

NANDI, G. C.; S. SAMAI, S.; Singh, M. S. Biginelli and Hantzsch-Type Reactions Leading to Highly Functionalized Dihydropyrimidinone, Thiocoumarin, and Pyridopyrimidinone Frameworks via Ring Annulation with β-Oxodithioesters. **Journal Organic Chemistry**, v.75, n.22, p.7785-7795, 2010.

PHUKAN, M.; KALITA, M. K.; BORAH, R. A new protocol for Biginelli (or like) reaction under solvent-free grinding method using Fe(NO₃)₃.9H₂O as catalyst. **Green Chemistry Letters and Reviews**, v.3, n.4, p. 329-334, 2010.

RAMOS, L.M. Tese de Doutorado: Reações de Biginelli promovidas por um novo catalisador de Ferro ionicamente marcado. **Instituto de química da universidade de Brasília**, p. 1-198, 2012.