

ALTERAÇÕES DE COMPONENTES HEMODINÂMICOS E DA APTIDÃO FÍSICA EM UMA MULHER ADULTA PRATICANTE DE EXERCÍCIO RESISTIDO DURANTE O ESTÁGIO EM SAÚDE: RELATO DE EXPERIÊNCIA

Geovanna Cecilia de Souza

Universidade Estadual de Goiás – ESEFFEGO

Beatriz Lira de Souza

Universidade Estadual de Goiás – ESEFFEGO

Veridiana Mota Moreira Lima

Universidade Estadual de Goiás – ESEFFEGO

RESUMO

Introdução: As doenças cardiovasculares constituem a principal causa de mortalidade global, associadas a fatores como hipertensão e diabetes tipo II. O exercício resistido é considerado uma estratégia segura e eficaz no controle desses agravos, promovendo adaptações funcionais e hemodinâmicas positivas. Objetivo: Relatar os efeitos de um programa de exercício resistido sobre parâmetros hemodinâmicos e de aptidão física em uma mulher adulta hipertensa. Materiais e Métodos: Estudo de caso realizado durante estágio supervisionado em saúde, com duração de seis semanas. A participante (58 anos) realizou sessões de musculação supervisionada, duas vezes por semana. Foram avaliadas as variáveis composição corporal, força de membros superiores (FMS), flexibilidade, equilíbrio estático e aptidão cardiorrespiratória, além da pres- são arterial sistólica e diastólica (PAS e PAD) aferidas em repouso e nos momentos pré e pósexercício. Resultados: Verificou-se redução da PAS e PAD de repouso (137/80 mmHg versus 116/78 mmHg), além de melhora nos valores médios aferidos pré (PAS: 120,3 ± 8,1 mmHg; PAD: 77,8 \pm 2,7 mmHg) e pós-exercício (PAS: 115,6 \pm 7,3 mmHg; PAD: 72,7 \pm 3,9 mmHg). A gordura visceral manteve-se estável, porém num índice considerado alto. Houve melhora nas variáveis FMS, flexibilidade, equilíbrio e aptidão cardiorrespiratória. Conclusão: O exercício resistido supervisionado promoveu benefícios importantes nos parâmetros hemodinâmicos e funcionais da participante hipertensa, evidenciando a eficiência desse componente enquanto estratégia de intervenção a curto prazo no caso em questão.

PALAVRAS-CHAVE: exercício resistido; hipertensão arterial; aptidão física.

INTRODUÇÃO

De acordo com a Organização Mundial da Saúde (OMS, 2025), as doenças cardiovasculares (DCV) são a principal causa de morte em todo o mundo, ceifando cerca de 17,9 milhões de vidas a cada ano. DCV são um grupo de doenças do coração e dos vasos sanguíneos e incluem doenças coronárias, doenças cerebrovasculares, doenças cardíacas reumáticas e outras condições. Mais de quatro em cada cinco mortes por DCV são devidas a ataques cardíacos e acidentes vasculares cerebrais, e um terço destas mortes ocorre prematuramente em pessoas com menos de 70 anos de idade.

Dentre os fatores de risco comportamentais mais importantes para o acometimento por DCV encontram-se a alimentação pouco saudável, a inatividade física, o consumo de tabaco e ingestão nociva de álcool. Os efeitos se manifestam através do aumento da pressão arterial (PA), da glicemia, dos lipídios circulantes, do sobrepeso e obesidade, indicando, por conseguinte, no risco aumentado de ataque cardíaco, acidente vascular cerebral/encefálico, insuficiência cardíaca e outras complicações (OMS, 2025).

O exercício resistido tem sido reconhecido como uma intervenção eficaz para a promoção da saúde de indivíduos em todas as fases do desenvolvimento, com a presença de comorbidades ou não (Liguori *et al.*, 2022). A prática regular do exercício resistido pode contribuir significativamente para a redução da PA, melhora da sensibilidade periférica à insulina, manutenção da força muscular, equilíbrio funcional, dentre outros fatores (ACSM, 2021; ADA, 2023; Liguori *et al.*, 2022).

Programas de intervenção voltados para populações clínicas demandam atenção às adaptações e ao monitoramento contínuo, com foco em segurança e eficácia. Indivíduos com hipertensão arterial podem apresentar respostas exageradas da PA ao exercício físico, mesmo com controle em repouso (Liguori *et al.*, 2022), o que reforça a importância de aferições tanto antes como após a prática de exercícios.

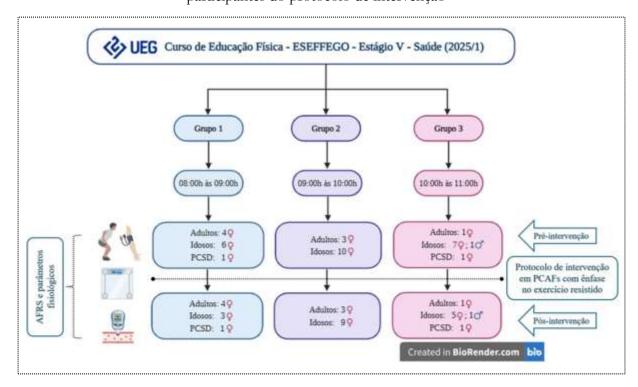
Considerando tais pressupostos, este trabalho objetiva relatar os efeitos de um programa de intervenção com exercício resistido sobre componentes hemodinâmicos e da aptidão física de uma mulher adulta hipertensa, acompanhada no Estágio Supervisionado V (Saúde), do curso

de Graduação em Educação Física da Escola Superior de Educação Física e Fisioterapia da Universidade Estadual de Goiás (ESEFFEGO/UEG)

METODOLOGIA

Este é um estudo descritivo, do tipo estudo de caso, onde uma única participante adulta e hipertensa, residente no Setor Vila Nova, Goiânia/GO, foi acompanhada para alcançar a uma compreensão maior sobre casos semelhantes (Thomas, Nelson e Silverman, 2012). Além do atestado de condições clínicas favoráveis à prática, a participante, com 58 anos de idade, assinou um Termo de Consentimento Livre e Esclarecido, contendo objetivos e aspectos éticos do programa de intervenção. Também respondeu uma anamnese contendo histórico de comorbidades, fatores de risco para doenças crônicas e um questionário de prontidão para a prática da atividade física (PAR-Q) (Thomas *et al.*, 1992).

O presente estudo fez parte de uma organização sistemática do Estágio V, realizado no primeiro semestre de 2025, nas dependências da ESEFFEGO, duas vezes por semana (terças e quintas-feiras), durante 6 semanas, onde 22 acadêmicos foram previamente divididos em 3 grupos para atuação em um protocolo de intervenção em práticas corporais e atividades físicas (PCAFs), com ênfase no exercício resistido. O acompanhamento da adulta hipertensa, previamente matriculada na recepção da Academia da ESEFFEGO, foi feito por duas alunas alocadas espontaneamente no grupo 3, respectivo à intervenção realizada entre 10-11 horas (Figura 1).


O programa de exercício resistido para pessoas com hipertensão arterial (HA) foi adaptado de Liguori *et al.* (2022)¹, considerando além do princípio FITT (frequência, intensidade, tempo e tipo de exercício), os seguintes componentes:

¹ Liguori e cols (2022), recomendam que pessoas com HA pratiquem exercícios físicos aeróbios ou de força muscular isoladamente ou de forma combinada, na maioria dos dias da semana, totalizando 90 a 150 minutos por semana. Além disso, devem realizar exercícios físicos neuromotores 2 a 3 dias por semana em intensidade baixa a moderada por ≥ 20-30 minutos por sessão e incluir exercícios que envolvam habilidades motoras e/ou exercícios físicos funcionais que utilizem a própria massa corporal ou ainda, exercícios físicos de flexibilidade.

- i. Aquecimento inicial com atividade aeróbia por aproximadamente 5 minutos (pedalada em cicloergômetro).
- ii. Parte principal da intervenção, através da realização de exercícios resistidos por cerca de
 50 minutos (agachamento, levantamento terra, remada e supino)^{2,3}.
- iii. Por último, 5 minutos de esfriamento ou finalização com alongamento estático e/ou dinâmico.

Fig. 1 – Organização geral do Estágio V: Grupos de acadêmicos, horários de atuação e participantes do protocolo de intervenção

Avaliações pré-intervenção: 08/04/2025. Avaliações pós-intervenção: 29/05/2025. Protocolos para avaliação da AFRS de adultos (Liguori *et al.*, 2022; Oliveira *et al.*, 2024), idosos (Rikli; Jones, 2008) e pessoas com Síndrome de Down (PCSD) (Silveira, 2020) foram aplicados, conforme presença de voluntários/as em cada grupo de intervenção. O controle da PAS e PAD por esfigmomanômetro, e da glicemia por glicosímetro portátil foi feito somente em hipertensos/as, pré-diabéticos/as e diabéticos/as, respectivamente, antes após as sessões de intervenção. Números indicam voluntários/as. Símbolos \mathbb{Q} = mulheres e \mathbb{Q} = homens. Figura criada com auxílio do *software* BioRender.

² Exercício com peso livre durante as 7 primeiras sessões (halteres, anilhas, extensores). Uso de equipamentos (supino, mesas flexo-extensora, cadeira adutora/abdutora, desenvolvimento e pressão de pernas) nas duas últimas.

³ Prescrição exercícios de força para hipertensos: □ 2 a 3 dias/semana, 40 a 50% de uma repetição máxima (iniciantes), 2 a 4 séries de 8 a 12 repetições para cada um dos grandes grupamentos musculares (□ 20 minutos), com intervalo de recuperação entre 1-2 minutos (Liguori *et al.*, 2022).

Para que o objetivo do presente estudo fosse atingido, realizou-se uma bateria de testes para avaliação dos componentes da aptidão física relacionada à saúde (AFRS), previamente descritos por Liguori *et al.* (2022) e Oliveira *et al.* (2024), antes e após as 6 semanas de intervenção. Os parâmetros analisados incluíram gordura visceral (Bioimpedância, OMRON HBF-514C), FMS (Dinamômetro digital Instrutherm DM-90), flexibilidade (Banco de Wells), equilíbrio estático (Unipodal) e aptidão cardiorespiratória (caminhada/corrida de 1200 metros). A PAS e PAD foram aferidas pré e pós-intervenção, em cada sessão (Esfigmomanômetro, OMRON HEM-7113). Os resultados obtidos foram expressos em unidades absolutas neste manuscrito.

RESULTADOS

A única participante mulher, adulta e hipertensa do grupo de intervenção 3, do estágio V, é fumante, faz uso de bebidas alcoólicas com regularidade, não pratica atividade física regularmente e está em tratamento medicamentoso há cerca de 10 anos, utilizando os fármacos Valsartana e Indapamida. Iniciou a participação nas intervenções com um pequeno atraso, dada necessidade de apresentar liberação médica recente para a prática de exercícios físicos, identificada pós aplicação do PAR-Q. Ao todo, frequentou 9 sessões de intervenção em PCAFs com ênfase no exercício resistido.

O programa de intervenção com exercício resistido durante as 9 sessões conduziu a adaptações fisiológicas relevantes, como a redução da PAS e PAD em repouso, bem como nos momentos pré e pós-exercício (Tabela 1).

Tabela 1 – Pressão arterial sistólica e diastólica em repouso e pós-exercício antes e após as sessões de intervenção

	PAS Rep (mmHg)	PAD Rep (mmHg)	PAS Pré-exe (mmHg)	PAD Pós-exe (mmHg)
Pré-intervenção	137	80	120,3 ± 8,1	77,8 ± 2,7
Pós-intervenção	116	78	115,6 ± 7,3	72,7 ± 3,9

Fonte: Autoria própria (2025).

Esses achados são especialmente importantes em indivíduos hipertensos, pois sinalizam maior eficiência hemodinâmica e melhor tolerância ao esforço, aspectos diretamente relaciona- dos à redução do risco de eventos cardiovasculares (Bueno *et al.*, 2020; Oliveira *et al.*, 2020).

A manutenção do índice de gordura visceral após a intervenção também foi observada (Tabela 2). Embora não tenha havido redução, o valor inicial já se encontrava dentro de um limite alto⁴, sugerindo que o acúmulo de gordura no tecido adiposo não foi sensível ao curto período de intervenção proposto. Estudos indicam que modificações significativas na gordura visceral, indicativas de um melhor perfil cardiometabólico, tendem a ocorrer em pessoas que realizam programas de exercício com maior duração ou frequência semanal (SBC, 2020).

Tabela 2 – Gordura visceral e aptidão física relacionada à saúde antes e após as sessões de intervenção

Variáveis	Avaliação pré- intervenção	Avaliação pós- in tervenção
Gordura visceral (pontos)	11	11
Flexibilidade (cm)	22,5	24
Equilíbrio membro inferior esquerdo (seg)	11,3	37
Equilíbrio membro inferior direito (seg)	37	37
Força membro superior esquerdo (kg)	23	33
Força membro superior direito (kg)	25,8	33
Resistência aeróbia (min)	12:42	11:00

Fonte: Autoria própria (2025).

A melhora da FMS esquerdo/direito também evidenciada (Tabela 2), tem sido relacio- nada à manutenção da autonomia funcional e melhor qualidade de vida em adultos e idosos (Silva et al., 2021). O ganho de equilíbrio, especialmente no membro inferior esquerdo (Tabela 2), reforça a eficiência de exercícios neuromusculares no desempenho motor (Monteiro et al., 2020), mesmo que em curto espaço de tempo. A redução no tempo de caminhada no teste de 1,200 metros também reflete melhora na resistência aeróbia (Tabela 2), e isso tem sido relatado em estudos prévios com indivíduos adultos hipertensos (Ferreira et al., 2025).

⁴ Distribuição de área da gordura visceral: 0 - aprox. 300 cm², 1 polegada= 2,54 cm. Normal: □ 9; Alto: 10 □ 14; Muito alto: □ 15 (*Omron Healthcare*).

Apesar de ser um estudo de caso, a partir de experiência realizada com limitação amos- tral no Estágio V, os achados reforçam a importância do acompanhamento individualizado e da utilização de parâmetros objetivos na mensuração dos efeitos do exercício resistido em populações com fatores de risco cardiovascular.

CONSIDERAÇÕES FINAIS

A intervenção em PCAFs com ênfase no exercício resistido, mesmo em curto prazo, demonstrou impacto positivo sobre os componentes hemodinâmicos e da aptidão física de uma mulher adulta hipertensa. O presente relato ressalta a importância da formação/atuação do profissional de Educação Física na prescrição e no monitoramento de exercícios em populações com necessidades específicas.

Mais estudos são necessários para caracterização de grupos de mulheres em condições e faixa etária similares⁵, para obtenção de um conjunto de dados robustos que possam ser analisados estatisticamente e então, subsidiar estudos populacionais e àqueles voltados para elaboração de políticas públicas de promoção à saúde.

REFERÊNCIAS

AMERICAN COLLEGE OF SPORTS MEDICINE – ACSM. **ACSM's Guidelines for Exercise Testing and Prescription**. Philadelphia: Wolters Kluwer, 2021.

AMERICAN DIABETES ASSOCIATION – ADA. Standards of Medical Care in Diabetes. **Diabetes Care**, v. 46: s1–s291, 2023.

AMORIM, Monica Alves Mesquita. **Manejo medicamentoso da insuficiência cardíaca: como melhorar a efetividade do tratamento?**. Rio de Janeiro: Epitaya, 2025.

BOENO, F. P. *et al.* Effect of aerobic and resistance exercise training on inflammation, endothelial function and ambulatory blood pressure in middle-aged hypertensive patients. **Journal of hypertension**, v. 38, n. 12, p. 2501-2509, 2020.

⁵ Sugere-se, também, reflexão abrangente sobre possíveis vieses de pesquisa que fazem uso de medicação concomitante ao exercício. Nesse estudo de curto prazo e de característica descritiva, com uma única pessoa, não foi feito período de *washout* ou de suspensão medicamentosa - essencial em "estudos clínicos" que visam garantir a precisão e confiabilidade dos resultados obtidos. O que também é um desafio, considerando participantes que dependem de medicamentos de uso contínuo para o controle de condições crônicas (Amorim, 2025).

FERREIRA, G. C. et al. Exercício resistido combinado com exercício aeróbico em indivíduos hipertensos: revisão sistemática e meta-análise. **Revista Brasileira de Fisiologia do Exercício**, v. 24, n. 1, 2025.

FRAGALA, M. S. *et al.* Resistance Training for Older Adults: Position Statement From the National Strength and Conditioning Association. **J. Strength Cond. Res.**, v. 33, n. 8, p. 2019–2052, 2019.

LIGUORI, G. *et al.* **Diretrizes do ACSM para testes de esforço e sua prescrição.** Rio de Janeiro: Guanabara Koogan, 2022.

MONTEIRO, R. C. et al. Efeitos de um programa de treinamento funcional no equilíbrio postural. **Motriz**, v. 26, e1020004, 2020.

OLIVEIRA, C. C. *et al.* Relação entre gordura visceral e risco cardiometabólico em adultos. **Rev. Bras. Med. Esporte**, v. 26, n. 3, p. 215–219, 2020.

OLIVEIRA, J. M. S. *et al.* **MOVESUS. Manual de referência para a avaliação da atividade física no Sistema Único de Saúde** Santa Maria, RS: Arco Editores, 2024.

OMRON Healtcare. **Gordura visceral.** Disponível em: https://omronbrasil.com/wp-content/uploads/2023/07/balanca HBF-514C-LA ES -PT im-2.pdf.

ORGANIZAÇÃO MUNDIAL DA SAÚDE - OMS. **Doenças cardiovasculares, 2**025. Disponível em: https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1

RIKLI, R. E.; JONES, C. J. Teste de aptidão física para idosos. São Paulo: Manole, 2008.

SOCIEDADE BRASILEIRA DE CARDIOLOGIA - SBC. Diretrizes Brasileiras de Hipertensão Arterial. **Arq. Bras. Cardiol.**, v. 116, n. 1, p. 1-75, 2021.

SILVA, D. S. *et al.* Avaliação da força de preensão manual e sua relação com funcionalidade em adultos. **Fisioter. Mov.**, v. 34, p. 1–8, 2021.

SILVEIRA, J. R. Validação de uma bateria de testes motores para avaliação da capacidade funcional de adultos com síndrome de Down. 2020. Tese (Doutorado) — Universidade Federal de Pelotas, Escola Superior de educação Física, Pelotas, RS, 2020.

THOMAS, J. R.; NELSON, J. K.; SILVERMAN, S. J. **Métodos de pesquisa em atividade física**. Porto Alegre: Artmed, 2012.

THOMAS, S.; READING, J.; SHEPHARD, R. J. Revision of the physical activity readiness questionnaire (PAR-Q). **Canadian Journal of Sport Sciences**, v. 17, n. 4, p. 338-345, 1992.