EXTRAÇÃO E CARACTERIZAÇÃO DE PECTINA DAS CASCAS DE LARANJA

Alexandre de Oliveira Carapeba, Graduando em Química Industrial, UEG /CET, <u>alexandre.355@aluno.ueg.br</u>
Luciana Rebelo Guilherme, Doutora (Orientadora), UEG/CET, <u>luciana.guilherme@ueg.br</u>

Resumo: A pectina é uma substância natural encontrada em frutas, principalmente nas cascas. É um polissacarídeo solúvel em água e tem a capacidade de formar gel quando combinada com açúcar e ácido em condições adequadas. Além disso, é conhecida por seus potenciais benefícios à saúde. Suas propriedades de promoção à saúde, comprovadas cientificamente, associadas às substâncias pécticas. Sendo assim, a pectina possui grande interesse industrial, pois a partir dela é possível obter novos tipos de biomateriais com diferentes aplicações como biofilmes e biofios. Neste trabalho, extraiu-se pectina por meio de bioinsumo agroindustrial, e determinou-se por meio de FTIR o grau de esterificação para essa amostra de pectina extraída (56%), que possui uma boa capacidade de gelificação. Além disso, apresentou um rendimento de 7,36% após extração com ácido cítrico e purificação com etanol.

Palavras-chave: Biopolímeros; biomassa; nanotecnologia.

INTRODUÇÃO

A pectina, um polissacarídeo natural predominante em frutas (especialmente nas cascas), possui propriedades gelificantes quando combinada com açúcar e ácido, sendo amplamente utilizada como agente espessante e estabilizante na indústria alimentícia (Canteri et al., 2012).

Além de suas aplicações tecnológicas, estudos demonstram seus significativos benefícios à saúde, incluindo a capacidade de reduzir o colesterol total através da diminuição da absorção de colesterol exógeno e aumento da excreção de ácidos biliares (Fietz et al., 1999). Pesquisas adicionais comprovam seu efeito na melhoria do perfil lipídico (aumento da razão HDL/LDL) e no controle glicêmico através do aumento da viscosidade do conteúdo intestinal (Canteri et al., 2012; Thakur et al., 1997). Como polímero de base biológica, a pectina apresenta características vantajosas como biodegradabilidade, biocompatibilidade e baixo custo (Picot-Allain et al., 2022). Entretanto, sua aplicação em áreas que demandam atividade antimicrobiana é limitada pela ausência de grupos funcionais específicos (Kontogiorgos, 2020). Esta limitação tem impulsionado pesquisas sobre a formação de complexos metálicos com pectina, estratégia que pode conferir novas propriedades funcionais ao biopolímero (Hassan et al., 2021).

Dessa forma, a pectina extraída e caracterizada nesse trabalho visa promover a síntese de biomateriais e compostos de coordenação, com aplicações diversas em indústrias alimentícia, farmacêutica e de embalagens.

MATERIAIS E MÉTODOS

Utilizou-se cerca de 5 Kg de cascas de laranja fornecidas por uma fabricante de sucos naturais em Goiânia. As cascas foram cortadas em pequenos pedaços e higienizadas em solução 1% de hipoclorito de sódio. Em seguida, transferiu-se as cascas para secagem em estufa com circulação de ar a 50°C durante 7 dias. Após secagem, foi utilizado um moinho para trituração com peneira de 48 mesh para preparar o pó necessário. Após moagem, obteve-se uma massa de 565 g de pó de cascas de laranja. Foram misturados 5 g de pó com 200 mL de ácido cítrico 0,1 M, aquecidos a 90 °C com agitação por 90 minutos. Após filtração por 24h, utilizou-se 180 mL do filtrado, ao qual foi adicionado etanol em dobro. A mistura foi centrifugada por 30 minutos a 3500 rpm, formando um precipitado que foi filtrado e seco em estufa. Após secagem, realizou-se cálculo de rendimento da pectina purificada por meio da Equação 1.

Rendimento (%) =
$$\left(\frac{Pectina\ purificada\ (g)}{Po\ de\ cascas\ (g)}\right) \times 100$$
 (Eq.1)

Previamente, verificou-se os principais grupos orgânicos presentes na amostra por meio de espectroscopia vibracional de absorção na região do infravermelho, para isso foi utilizado o espectrômetro de infravermelho com transformadas de Fourier Frontier MID-NIR - Perkim Elmer, na faixa de 400 a 4000 cm⁻¹, realizado no CAiTec (Centro de Análises, Inovação e Tecnologia em Ciências Naturais e Aplicadas da UEG).

O grau de esterificação (DE) da pectina foi calculado através da análise do espectro de Infravermelho (IV), onde a proporção da área dos picos de absorção dos grupos carboxílicos esterificados e não esterificados foram usados para o cálculo, como apresentado na Equação 2 (Eq.2), seguindo a metodologia de (Zanella, 2013).

DE (%) =
$$\left(\frac{P1}{P2+P1}\right) \times 100$$
 (Eq.2)

Onde:

P1 = Área do pico correspondente aos grupos carboxílicos esterificados

P2 = Área do pico correspondente aos grupos carboxílicos não esterificados.

RESULTADOS

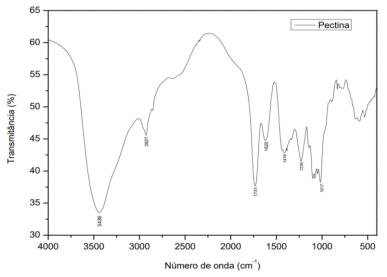

A Figura 1 apresenta a pectina obtida após os processos de extração e purificação.

Figura 1 - Pectina purificada

A Figura 2, que apresenta o espectro FTIR obtido para a amostra obtida da extração de pectina. Na Tabela 1, apresenta uma comparação dos principais picos de interesse aos obtidos na literatura.

Figura 2 – Espectro de absorção no infravermelho da pectina, apresentando as bandas de absorção que confirmam a presença de pectina.

Fonte: Próprio autor

Tabela 1: Comparação dos números de onda (cm⁻¹) dos picos de absorção no espectro de Infravermelho (IR) da pectina, aos observados em diferentes estudos.

Análise	Panchev et al.,	Syntesia et al.,	Duwee et al,	
autoral	2010	2003	2022	Atribuições relacionadas
3436	3493	3425	3287	u(OH)
2927	2942	2941	2918	u(CH)
1731	1762	X	1746	$ u$ (C=O) $_{COOH}$
1620	1645	1633	1605	$ u_{ass}(COO^{\scriptscriptstyle{-}})$
1416	X	1419	1439	$ u_{\text{sim}}(\text{COO}^-) $
X	1408	X	X	$ u$, δ (C–OH) $_{\rm COOH}$

Fonte: Próprio autor.

O grau de esterificação da pectina foi calculado utilizando as áreas abaixo da curva dos picos 1731 cm⁻¹ e 1620 cm⁻¹ por meio do *software* Origin 8.5 utilizando a (Eq. 2), e o rendimento foi calculado por meio da (Eq. 1). A Tabela 2 apresenta os resultados obtidos após os cálculos.

Tabela 2: Comparação dos resultados de rendimento e DE observados em diferentes trabalhos.

Resultados	Análise autoral	Duwee et al., 2022	Kute,2020
DE (%)	56	59	35
Rendimento (%)	7,36	3,82	8,78

Fonte: Próprio autor.

DISCUSSÃO

Os resultados obtidos no infravermelho se assemelham aos dados encontrados na literatura por diferentes autores. Sendo assim, é possível afirmar que o produto obtido da extração se trata da pectina, uma vez que, os grupos funcionais encontrados na análise de infravermelho batem com os dados encontrados em outros trabalhos semelhantes.

Observou-se variação no rendimento e no grau de esterificação (DE) da pectina extraída. Em comparação com Duwee et al. (2022), o rendimento foi maior, mas o DE menor. Já Kute (2020) obteve maior rendimento, porém com DE abaixo de 50%, indicando baixa esterificação, possivelmente pelo ácido utilizado. Conclui-se que os resultados estão dentro da média para extração de pectina de cascas de laranja, com variações atribuídas ao método, tempo de extração e tipo de ácido.

CONCLUSÕES

Com os resultados obtidos, observou-se a presença da pectina nas amostras extraídas e também foi possível determinar a qualidade, sendo considerada de boa capacidade de gelificação, pois apresenta um grau de esterificação >50% e um rendimento próximo ao encontrado em outros trabalhos. Nos próximos meses, serão realizadas as demais caracterizações do polissacarídeo e a síntese de biomateriais.

REFERÊNCIAS

Canteri, M. H., et al. Pectina: da matéria-prima ao produto final. **Polímeros**, v. 22, n. 2, p. 149-157, 2012. Duwee, Y.S. et al. Multi-objective optimization of pectin extraction from orange peel via response surface methodology: yield and degree of esterification. *Food Measure* 16, 1710–1724 (2022).

Fietz, V. R., et al. Efeitos da pectina e da celulose nos níveis séricos de colesterol e triglicerídeos em ratos hiperlipidemicos. **Food Science and Technology**, v. 19, p. 318-321, 1999.

Hassan, E. A. et al. New pectin derivatives with antimicrobial and emulsification properties via complexation with metal-terpyridines. **Carbohydrate Polymers**, v. 268, p. 118230, 2021.

Kontogiorgos, V. (Ed.). Pectin: technological and physiological properties. Springer Nature, 2020.

Kute, Anil B. et al. Characterization of pectin extracted from orange peel powder using microwave-assisted and acid extraction methods. **Agricultural Research**, v. 9, p. 241-248, 2020.

Panchev, I. N. et al. On the water-sorption properties of pectin. **Food Hydrocolloids**, v. 24, n. 8, p. 763-769, 2010.

Picot-Allain, M. C. N. Extraction, characterisation, and application of pectin from tropical and subtropical fruits: a review. **Food Reviews International**, v. 38, n. 3, p. 282-312, 2022.

Rodsamran, P.; Sothornvit, R. Preparation and characterization of pectin fraction from pineapple peel as a natural plasticizer and material for biopolymer film. **Food and Bioproducts Processing**, v. 118, p. 198-206, 2019.

Synytsya, A. et al. Fourier transform Raman and infrared spectroscopy of pectins. **Carbohydrate Polymers**, Barking, v. 54, p. 97-106, 2003.

Thakur, B. R., SINGH, R., HANDA, A., RAO, M. Chemistry and uses of pectin – A review. **Critical Reviews in Food Science and Nutritions**, v. 1, pág. 47-73, 1997.

Zanella, K. et al. Extração da pectina da casca da laranja-pera (Citrus sinensis L. Osbeck) com solução diluída de ácido cítrico. **Campinas, São Paulo, Brasil**, 2013.