

MONITORAMENTO DE VOÇOROCA NA ÁREA RURAL DE MARZAGÃO (GO)

Reginaldo Borges de Oliveira¹
Alik Timóteo de Sousa²

Resumo: Processos erosivos acelerados se manifestam devido à ação antrópica inadequada, causando danos ambientais por vezes irreversíveis ou com elevado grau de dificuldade para o seu controle. A pesquisa refere-se à caracterização de uma voçoroca em cabeceira de drenagem, na área rural do município de Marzagão, GO. Tem por objetivo diagnosticar os mecanismos erosivos que contribuem para a sua evolução. O trabalho foi desenvolvido a partir do monitoramento da evolução lateral por estacas em suas bordas e vertical no interior do talvegue por pinos, e, monitorados mensalmente, visando identificar o volume de sedimentos que colmatam a nascente do córrego do Mosquito, um dos principais afluentes do ribeirão do Bagre, manancial que abastece a população local. A erosão apresenta-se muito instável com previsão de rápida evolução progredindo suas dimensões e assoreando a drenagem local.

Palavras chaves: Assoreamento, processos erosivos, voçoroca.

1. Introdução

Marzagão localiza-se ao Sul de Goiás, na Microrregião Meia Ponte, distante cerca de 220 km da capital, Goiânia. É entrecortado pela rodovia GO 210 que o interliga aos municípios de Caldas Novas e Corumbaíba. Possui área territorial de 222,428 km² e população de 2.212 habitantes (IBGE, 2016).

O desmatamento associado à ocupação inadequada dos solos nas áreas rurais do município tem contribuído substancialmente para o aparecimento e desenvolvimento de processos erosivos lineares de grande porte. À medida que novas áreas são ocupadas para pastagens ou agricultura o solo fica exposto sem a proteção natural, favorecendo o surgimento de processos erosivos acelerados.

Santos et al. (2009) salientam que a ocupação do Cerrado a partir das últimas três décadas do século XX tem patrocinado o aparecimento disseminado de erosões hídricas em muitos estados brasileiros que, na maioria das vezes, formam voçorocas.

O conjunto de formações que podemos ver na superfície da Terra, tais como montanhas, encostas, vales, planícies e planaltos, forma o relevo. O relevo e a vegetação formam a paisagem.

A paisagem sofre alterações a apartir dos fatores exógenos comandados pela ação do clima que provoca modificações na topografia da superfície terrestre, devido à alteração dos solos e rochas. Os fatores endógenos ou internos também contribuem para transformações da paisagem, sobretudo na escala de tempo geológico.

¹ Discente do curso de Pós Graduação em Planejamento e Gestão Ambiental da UEG, Câmpus Morrinhos – reginaldokasique@hotmail.com

² Docente do Curso de Pós Graduação em Planejamento e Gestão Ambiental da UEG, Câmpus Morrinhos – aliktimoteo@gmail.com

De acordo com Guerra e Cunha (2008) estas mudanças ocorrem tão lentamente que passam quase despercebidas. Fazendo com que os elementos que modelagam o relevo sejam chamados de agentes geológicos. Os agentes externos refere-se à energia ativada pela luz solar. Essa energia é responsável por agentes que influenciado pela latitude e inclinação da Terra atua com diferentes intensidades (portanto, com um desequilibrio térmico diferenciado).

Erosão e produção de sedimentos estão entre os processos geomorfológicos de maior risco potencial devido à sua abrangência superfícial. Uma vez que, segundo, estimativas um sexto dos solos do planeta é afetado por esses eventos (OLIVEIRA, 2001).

A ocorrência dos processos erosivos envolve uma série de fatores que segundo Almeida (2001), determinam as variações nas taxas de erosão e podem ser subdivididos em: erosividade (causada pela chuva), erodibilidade (proporcionada pelas propriedades dos solos), características das encostas e natureza vegetal.

De acordo com Camapum de Carvalho et al. (2006) a erosão laminar, sulcos, ravinas e voçorocas constituem a sequência natural de evolução dos processos erosivos. Neste caso, são enfatizadas as últimas feições consideradas como erosões de grande porte e que normalmente sucedem as ravinas.

Para Bertoni e Lombardi Neto (2010) a voçoroca constitui uma forma de erosão, causada pela passagem contínua da enxurrada por um determinado sulco, anualmente, que se amplia até atingir o lençol freático e grandes cavidades em profundidade e extensão, devido aos movimentos de massa. No entanto, alguns autores consideram como voçorocas erosões superiores a 50 cm de profundidade.

Para Camapum de Carvalho et al. (2006) é comum no Brasil a distinção entre ravinas e voçorocas quando essas atingem o lençol freático. Essas últimas feições possuem mecanismos distintos das demais feições.

A erosão por voçoroca é causada por vários mecanismos que atuam em diferentes escalas temporais e espaciais, podendo ser entendidas por: deslocamentos de partículas, transporte por escoamento superficial difuso, transporte por fluxos concentrados, erosão por quedas d'água, solapamentos, liquefação, movimentos de massa e arraste de partículas (OLIVEIRA, 1999).

A erosão investigada se enquadra como voçoroca, pois, interceptou o lençol freático perene. Possui mecanismos erosivos típicos de voçorocas (alcovas de regressão, *pipings*, solapamento de taludes, trinas de tração, movimentos de massa entre outros elementos) que

comandam a sua evolução durante o período chuvoso e o de estiagem, o que a caracteriza como voçoroca.

A pesquisa tem como objetivo geral diagnosticar as causas de surgimento, evolução, bem como, a dinâmica de sedimentos no interior da voçoroca do Palmito em Marzagão (GO) visando à elaboração de propostas de controle mais adequadas.

2. Metodologia

A voçoroca estudada localiza se na serra de Marzagão (GO) distante aproximadamente 5 km da sede administrativa local. A serra possui uma área em torno de 6 km², com formato arredondado, topo relativamente plano e escarpas íngremes. Está ocupada parcialmente com pastagens cultivadas para a criação de gado de corte. Possui vegetação de Cerrado e muitas áreas de nascentes (Figura 1).

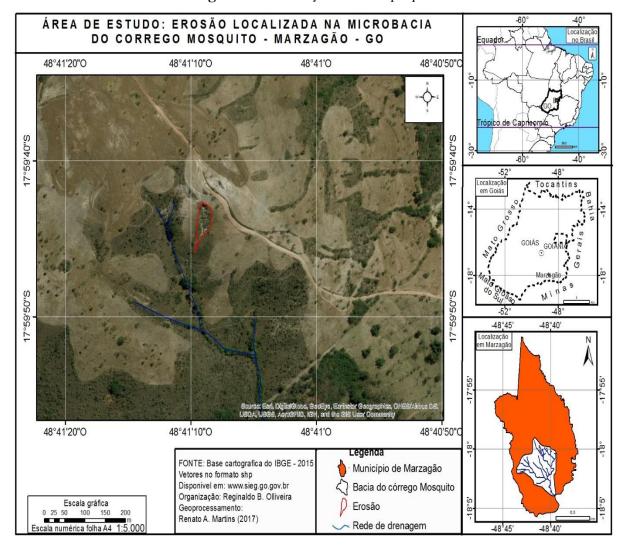


Figura 1 - Localização da área de pesquisa

Fonte: IBGE (2015)

A pesquisa foi realizada a partir de revisão bibliográfica sobre a temática proposta, conceitos pertinentes e materiais e métodos. Posteriormente, selecionou-se a área de pesquisa, com base em trabalho anterior de conclusão de curso em Geografia, realizado em 2011. O objeto de estudo está localizado na área rural do município no sopé da serra homônima que representa um fragmento da Serra de Caldas Novas.

Em outra fase da investigação realizou-se trabalhos de campo para implantação de estacas de monitoramento da evolução vertical do talvegue da voçoroca do Palmito, com base em metodologia adaptada de Guerra e Cunha (2005). Foram instaladas 19 estacas de 20 cm de comprimento, milimetradas, distantes cinco (5) metros umas das outras (Figura 2 e Figura 3). O monitoramento foi realizado durante oito meses entre maio e dezembro de 2016.

Figura 2 - Medições das estacas

Figura 3 - Estaca 5 mostrando processo sedimentação

Fonte: Oliveira (2016)

O monitoramento da evolução vertical do talvegue visou averiguar a intensidade do seu aprofundamento e/ou deposição de sedimentos. Posteriormente no final da erosão foi feito a coleta do fluxo hídrico da voçoroca, para averiguar o volume de água e sedimentos transportados (Figura 4). Esses procedimentos foram realizados em dois períodos seco (maio) e no chuvoso (dezembro). Para obtenção dessa última informação utilizou-se cano PVC, balde de 20 litros, frasco medidor em milímetros e cronômetro (Figura 5 e Figura 6).

Figura 4 - Coleta do fluxo d'água na cabeceira da voçoroca.

Fonte: Oliveira (2016)

Figura 6 - Cronometrando o tempo gasto para coleta

Fonte: Oliveira (2016)

3. Resultados e Discussão

A serra de Marzagão faz parte da província geológica denominada Escudos Cristalinos. Este embasamento litológico é o muito antigo, por isso, é intensamente desgastado por processos erosivos (ALMEIDA, 2011). Segundo o autor ele é formado basicamente por: Micaxistos, Xistos, Quartzitos, Conglomerados, Gnaisse e Rochas Sedimentares. De acordo com Pop (1998) essas rochas estão presentes nos grupos Araxá, Bambuí, Areado, Paranoá, Canastra, Vazante e Natividade. Faz parte dos dobramentos Brasília. Esse dobramento atravessa o Brasil Central abrangendo os Estados de Goiás, Tocantins e Minas Gerais (Planalto Central).

A topografia da microbacia do córrego do Mosquito, drenagem que a voçoroca estudada está conectada é ondulada a fortemente ondulada com altitudes que variam entre 520 metros e 915 metros (Figura 7).

A vegetação é composta por fitofisionomias do Cerrado, com destaque para Campo limpo, Cerrado rupestre, Cerrado Stricto Senso e Mata de Galeria. A bacia de contribuição é

ocupada pela atividade pecuária. Na serra nascem alguns dos cursos d'água mais importantes do município, estas nascentes contribuem para o abastecimento da microbacia do ribeirão dos Bagres. Entre estes cursos d'água destacam-se o córrego do Palmito, o córrego do Mosquito, o córrego dos Lima.

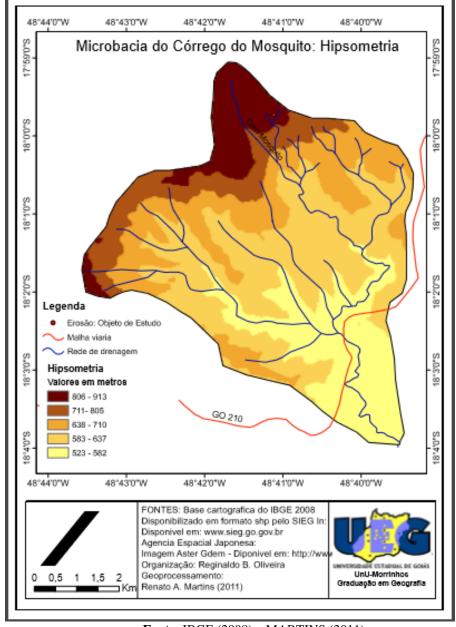


Figura 7 - Mapa hipsométrico da microbacia do córrego do Mosquito

Fonte: IBGE (2008) – MARTINS (2011)

Por ser uma área com elevado gradiente, o talvegue da erosão possui grande variação em profundidade e em seu percurso. Os solos locais são suscetíveis ao desenvolvimento de processos erosivos devido ao predomínio da fração areia. Destacam-se os Gleissolos em áreas de nascentes, Argissolos em áreas moderadamente inclinadas, Neossolos

litólicos em áreas mais elevadas e Neossolos Quartzarênicos no topo da serra (ordens de solos verificadas de forma genérica em atividades de campo na bacia de contribuição da voçoroca).

A voçoroca estudada está localizada em área de pastagem, na margem de uma estrada vicinal, principal patrocinadora de seu surgimento e evolução. O terreno local apresenta forte ruptura de declive, no trecho médio/superior da Serra de Marzagão. A vertente possui forma levemente concavizada/retilínea nas imediações da erosão, sendo côncava em sua base e plana na cabeceira.

A voçoroca possui 128 metros de comprimento, largura média de 5 metros, sendo estreita na cabeceira e trecho jusante e larga em seu trecho médio, com cerca de 28 metros, neste setor. Possui aproximadamente 2,5 metros de profundidade média, perfazendo um volume de perda de material em torno de 1.600m³ (Figura 8 e Figura 9).

Figura 8 - Vista parcial da voçoroca – montante | **Figura 9 -** Vista lateral voçoroca. para jusante.

Fonte: Oliveira (2016)

Encontra-se muito instável com previsão de evolução lateral e remontante em direção à estrada vicinal. Possui mecanismos ativos próprios de voçorocas com destaque para: taludes solapados, alcovas de regressão, pipings, trincas de tração, abatimentos sucessivos e movimentos de massa localizados, principalmente em seu trecho médio.

A sua dinâmica tem provocado inúmeros impactos ambientais dentre eles: a perda de solos afetados pela incisão, assoreamento do córrego do Mosquito e drenagem de ordem superior, perda da vegetação natural com desabamento de árvores em suas bordas, riscos de interceptação da estrada em sua cabeceira e queda de bovinos em seu interior, bem como, prejuízos econômicos e sociais.

O monitoramento da evolução vertical por meio de estacas colocadas no interior da voçoroca (Tabela 1) permite afirmar que ao longo do talvegue sobre xisto está havendo contínuo processo de retirada e deposição de sedimentos (Figura 10). No trecho médio superior (estacas 6 e 7) houve menor retirada de sedimentos, enquanto que mais a jusante (estaca 18) nos

primeiros meses de observação houve forte retirada de material e posteriormente, em novembro, ocorreu deposição.

Tabela 1 - Evolução vertical do interior da voçoroca

Ano 2016																			
Est.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Alt.	853	853	852	850	850	846	843	849	834	837	832	831	833	830	828	826	826	820	815
Maio	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.15	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Jun	0.10	0.10	0.10	0.10	0.10	0.19	0.22	0.09	0.28	0.17	0.17	0.15	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Jul	0.10	0.10	0.10	0.10	0.10	0.19	0.22	0.09	0.28	0.17	0.17	0.15	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Ago	0.10	0.10	0.10	0.10	0.10	0.17	0.22	0.09	0.28	0.17	0.17	0.15	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Set	0.09	0.09	0.10	0.11	0.19	0.22	0.09	0.14	0.16	0.15	0.10	0.10	0.10	0.09	0.08	0.10	0.07	0.10	0.10
Out	0.09	0.55	0.95	0.10	0.10	0.18	0.21	0.10	0.09	0.12	0.09	0.18	0.13	0.12	0.15	0.14	0.06	0.08	0.08
Nov	0.20	0.65	0.07	0.09	0.08	0.20	0.19	0.15	0.17	0.05	0.14	0.20	0.08	0.15	0.20	0.08	0.15	0.20	0.05
Dez	0.14	0.06	0.05	0.07	0.08	0.20	0.19	0.15	0.17	0.05	0.14	0.20	0.08	0.15	0.20	0.05	0.03	0.15	0.10

Fonte: Oliveira (2016)

Fonte: Oliveira (2016)

Os dados da coleta de sedimentos permitem afirmar que houve transporte de 6,5 gramas/litro, no período seco e 9,5 gramas/litro no período chuvoso. Demonstrando uma considerável perda de materiais durante as chuvas na região. Contudo, mesmo durante a estiagem, a drenagem perene da voçoroca, libera e transporta sedimentos provenientes de seu interior e bordas para a drenagem local (Quadro 1).

Vale ressaltar que a produção e o transporte de sedimentos no interior da voçoroca contribuem para o assoreamento do córrego do Mosquito que é tributário do ribeirão do Bagre, fonte de água potável para a população da cidade de Marzagão. Portanto, essa bacia hidrográfica é muito importante para o município, por isso, a necessidade da implantação de obras de contenção adequadas da referida erosão.

Quadro 1 - Coleta de água e sedimentos no interior da voçoroca – estiage	m e período chuvoso
Abril – 2016 (início da estiagem)	

Tempo	Água (litros)	Vazão	Sedimentos (grama)	Sedimentos					
(minutos)		(litros/minutos)		(gramas/litros)					
8 minutos 15	20	2,45	130	6,5					
segundos									
Dezembro – 2016 (início das chuvas)									
4 Minutos e 24	20	4,71	190	9,5					
Segundos									

Fonte: Oliveira (2016)

Até o presente momento, o proprietário da fazenda onde está instalada a voçoroca, não implantou nenhuma medida para sua estabilização. Contudo, no interior da incisão existem gramíneas naturais e exóticas (*brachiaria decumbens*) plantas secundárias como samambaias, embaúbas, quaresmeira, dentre outras que conferem maior resistência dos solos aos processos erosivos.

Dentre as medidas para conter a sua progressão sugere-se: a) Isolamento da área com cerca de arame, num raio igual a 50 metros, para evitar o pisoteio do gado em suas bordas e interior; b) Implantação de paliçadas transversais ao escoamento fluvial, com bambus ou madeira, nos pontos de maior sedimentação; c) Disciplinar o escoamento superficial proveniente da estrada vicinal e que atinge a cabeceira da voçoroca, com a construção de bacias de infiltração e sangras d'água; d) Introduzir espécies vegetais nativas e exóticas como a gramínea *vetiver*, que possui sistema radicular profundo e resistente, no seu interior e entorno, visando aumentar a resistência do solo ao cisalhamento; e) Por fim, deve se monitorar periodicamente as intervenções realizadas para efetivo sucesso das medidas implantadas.

4. Considerações Finais

A pesquisa foi importante, pois, possibilitou avaliar a situação atual da incisão erosiva visando à proposição de medidas de contenção mais indicadas para a sua estabilização, objetivando a redução dos impactos ambientais decorrentes. O monitoramento da evolução vertical da erosão foi interessante para o entendimento de sua dinâmica atual e para averiguar a previsão de sua evolução e/ou estabilização.

Medidas para estabilização são necessárias para conter o avanço da erosão. Os sedimentos depositados continuamente na nascente do córrego do Mosquito, proveniente da instabilidade da voçoroca, bem como, a perda da vegetação nativa que desaba em seu interior e riscos de interceptação da estrada vicinal em sua cabeceira são os principais impactos ambientais encontrados na área.

5. Referências

ALMEIDA, L. Estudo da Aplicabilidade de Técnicas de recargas Artificiais de Aquíferos para Sustentabilidade das Águas Termais da cidade de Caldas Novas/GO. 134 f. Tese (Doutorado) número 104, do Instituto de Geociências –IG da Universidade de Brasília - UNB. Brasiléia 2011.

ANDRADE, A. C. de, LEAL. L. R., GUIMARÃES, R. F. & CARVALHO JUNIOR, O. A. de. Análise dos fatores antrópicos nos processos erosivos na bacia do rio Fêmeas (Barreiras-BA). In: **Anais do IV Simpósio Nacional de Geomorfologia - Geomorfologia:** interfaces, aplicações e perspectivas, São Luís. UFMA, v.1, 2002.

BERTONI, J.; LOMBARDI NETO, F.L. Conservação do Solo, 5. ed. São Paulo: Ícone, 2005.

BEZERRA, J.F.R. Geomorfologia e reabilitação de áreas degradadas por erosão com técnicas de bioengenharia de solos na bacia do Rio Bacanga, São Luís – MA. Rio de Janeiro: UFRJ/PPGG, 2011.

BRASIL. **Instituto Brasileiro de Geografia e Estatística. Estimativa populacional.** Rio de Janeiro. IBGE, 2015. Disponível em htt.// www.ibge, gov/ home/estatística/ população/indic/ 2015/ indicsau de- pdf>. Acesso- em 27- Jan. 2017;

CAMAPUM de CARVALHO, J.C., et al.. **Processos Erosivos no Centro Oeste Brasileiro**. Editora FINATEC, 2006.

EMBRAPA. **Recuperação de voçorocas em áreas rurais** Rio de Janeiro, 2006. Disponível em:http://www.enpab.embrapa.br/publicacoses;/sisemasdeproduçoes/voçoroca/recomperação. htp.Acessado em 21 de junho de 2016.

GUERRA, A, J, T; CUNHA, S, B. (org.) **Geomorfologia do Brasil**. 2. Ed. Rio de Janeiro: Bertrand Brasil, 2005

GUERRA, A.J.T.; CUNHA, S.B. **Geomorfologia**: uma atualização de bases e conceitos. (Org.). 8. ed. – Rio de Janeiro: Bertrand Brasil, 2008. 472p.

GUERRA, A. J. T. **O início do processo erosivo.** 3. Ed. Rio de Janeiro: Bertrand Brasil, 2007.

JACOMINI,P.K,T. **A nova classificação brasileira de solos**. Universidade Federal de Pernambuco. Recife. PB. 2006.

LA PORTE, F. L. **Ambientes antigos de sedimentação**. São Paulo: Edgard Blucher, 1968. 136 p.

MACHADO, B. I. **Bacias sedimentares e formação pós Paleozoica do Brasil.** Rio de Janeiro: Inter ciências, 1979.

MATTOS, C. S ET AL. Saneamento ecológico econômico da microrregião do meia ponte. Secretaria do Meio Ambientem 1999.

OLIVEIRA, R. B. **Processo erosivo linear:** monitoramento de voçoroca em borda de estrada rural no município de Mazagão (GO) (2010- 2011) 2011. 54 f. Monografia (Trabalho de conclusão de curso em geografia) — Unidade Universitária de Morrinhos, Universidade Estadual de Goiás, Morrinhos, 2011.

POP, J. H. **Geologia geral.** 5° ed. Rio de Janeiro: GEN, 1998.

SILVA, J.A. **Direito Ambiental Constitucional.** 6. ed., Malheiros Editores Ltda., São Paulo, Brasil, 2007.

SILVA, M.V.; PESQUEIRO, M.A. Caminhos interdisciplinares pelo ambiente, história e ensino: o sul goiano contexto. (Orgs.). SOUSA, A. T. OLIVEIRA, G. A. (Capitulo 02, pag. 31). - Uberlândia (MG): UEG (Morrinhos). Assis Editora. 2012.

SOUSA, A. T. de. Processo erosivo linear na bacia do córrego Pontinhas em Orizona – GO. In: Anais do IV Simpósio Nacional de Geomorfologia - Geomorfologia: Interfaces, aplicações e perspectivas, São Luís, UFMA, 2002.